§ 25.1385 ### § 25.1385 Position light system installation. - (a) General. Each part of each position light system must meet the applicable requirements of this section and each system as a whole must meet the requirements of §§25.1387 through 25.1397. - (b) Forward position lights. Forward position lights must consist of a red and a green light spaced laterally as far apart as practicable and installed forward on the airplane so that, with the airplane in the normal flying position, the red light is on the left side and the green light is on the right side. Each light must be approved. - (c) Rear position light. The rear position light must be a white light mounted as far aft as practicable on the tail or on each wing tip, and must be approved. - (d) Light covers and color filters. Each light cover or color filter must be at least flame resistant and may not change color or shape or lose any appreciable light transmission during normal use. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55468, Dec. 20, 1976] ## § 25.1387 Position light system dihedral angles. - (a) Except as provided in paragraph (e) of this section, each forward and rear position light must, as installed, show unbroken light within the dihedral angles described in this section. - (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first, as viewed when looking forward along the longitudinal axis. - (c) Dihedral angle R (right) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the right of the first, as viewed when looking forward along the longitudinal axis. - (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70 degrees to the right and to the left, respectively, to a vertical plane passing through the lon- gitudinal axis, as viewed when looking aft along the longitudinal axis. (e) If the rear position light, when mounted as far aft as practicable in accordance with §25.1385(c), cannot show unbroken light within dihedral angle A (as defined in paragraph (d) of this section), a solid angle or angles of obstructed visibility totaling not more than 0.04 steradians is allowable within that dihedral angle, if such solid angle is within a cone whose apex is at the rear position light and whose elements make an angle of 30° with a vertical line passing through the rear position light. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–30, 36 FR 21278, Nov. 5, 1971] ## § 25.1389 Position light distribution and intensities. - (a) General. The intensities prescribed in this section must be provided by new equipment with light covers and color filters in place. Intensities must be determined with the light source operating at a steady value equal to the average luminous output of the source at the normal operating voltage of the airplane. The light distribution and intensity of each position light must meet the requirements of paragraph (b) of this section. - (b) Forward and rear position lights. The light distribution and intensities of forward and rear position lights must be expressed in terms of minimum intensities in the horizontal plane, minimum intensities in any vertical plane, and maximum intensities in overlapping beams, within dihedral angles L, R, and A, and must meet the following requirements: - (1) Intensities in the horizontal plane. Each intensity in the horizontal plane (the plane containing the longitudinal axis of the airplane and perpendicular to the plane of symmetry of the airplane) must equal or exceed the values in §25.1391. - (2) Intensities in any vertical plane. Each intensity in any vertical plane (the plane perpendicular to the horizontal plane) must equal or exceed the appropriate value in §25.1393, where I is the minimum intensity prescribed in §25.1391 for the corresponding angles in the horizontal plane. ### Federal Aviation Administration, DOT (3) Intensities in overlaps between adjacent signals. No intensity in any overlap between adjacent signals may exceed the values given in §25.1395, except that higher intensities in overlaps may be used with main beam intensities substantially greater than the minima specified in §§ 25.1391 and 25.1393 if the overlap intensities in relation to the main beam intensities do not adversely affect signal clarity. When the peak intensity of the forward position lights is more than 100 candles, the maximum overlap intensities between them may exceed the values given in §25.1395 if the overlap intensity in Area A is not more than 10 percent of peak position light intensity and the overlap intensity in Area B is not greater than 2.5 percent of peak position light intensitv. # §25.1391 Minimum intensities in the horizontal plane of forward and rear position lights. Each position light intensity must equal or exceed the applicable values in the following table: | Dihedral angle (light in-
cluded) | Angle from right
or left of longitu-
dinal axis, meas-
ured from dead
ahead | Intensity
(candles) | |--------------------------------------|---|------------------------| | L and R (forward red and green). | 0° to 10°
10° to 20°
20° to 110° | 40
30
5 | | A (rear white) | 110° to 180° | 20 | # § 25.1393 Minimum intensities in any vertical plane of forward and rear position lights. Each position light intensity must equal or exceed the applicable values in the following table: | Angle above or below the horizontal plane | Intensity, I | |---|--------------| | 0° | 1.00 | | 0° to 5° | 0.90 | | 5° to 10° | 0.80 | | 10° to 15° | 0.70 | | 15° to 20° | 0.50 | | 20° to 30° | 0.30 | | 30° to 40° | 0.10 | | 40° to 90° | 0.05 | #### § 25.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the fol- lowing table, except as provided in §25.1389(b)(3). | | Maximum intensity | | |----------------------------------|---------------------|---------------------| | Overlaps | Area A
(candles) | Area B
(candles) | | Green in dihedral angle L | 10 | 1 | | Red in dihedral angle R | 10 | 1 | | Green in dihedral angle A | 5 | 1 | | Red in dihedral angle A | 5 | 1 | | Rear white in dihedral angle L | 5 | 1 | | Rear white in dihedral angle R | 5 | 1 | #### Where- - (a) Area A includes all directions in the adjacent dihedral angle that pass through the light source and intersect the common boundary plane at more than 10 degrees but less than 20 degrees; and - (b) Area B includes all directions in the adjacent dihedral angle that pass through the light source and intersect the common boundary plane at more than 20 degrees. ### $\S 25.1397$ Color specifications. Each position light color must have the applicable International Commission on Illumination chromaticity coordinates as follows: - (a) Aviation red— - y is not greater than 0.335; and z is not greater than 0.002. - (b) Aviation green— - x is not greater than 0.440 0.320y; - x is not greater than y-0.170; and - y is not less than 0.390 0.170x. - (c) Aviation white- - x is not less than 0.300 and not greater than 0.540: - y is not less than x-0.040; or $y_0-0.010$, whichever is the smaller; and - y is not greater than x+0.020 nor 0.636-0.400x; Where y_0 is the y coordinate of the Planckian radiator for the value of x considered. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–27, 36 FR 12972, July 10, 1971] ### §25.1399 Riding light. - (a) Each riding (anchor) light required for a seaplane or amphibian must be installed so that it can— - (1) Show a white light for at least 2 nautical miles at night under clear atmospheric conditions; and